Monarch

Danaus plexippus

Summary 7

The monarch butterfly (Danaus plexippus) is a milkweed butterfly (subfamily Danainae) in the family Nymphalidae. It may be the most familiar North American butterfly. The monarch butterfly is not currently listed under the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) or protected specifically under U.S. domestic laws. Its wings feature an easily recognizable orange and black pattern, with a wingspan of 8.9–10.2 cm (3½–4 in). (The viceroy butterfly is similar...

Adult 8

An adult butterfly emerges after about two weeks as a chyrsalid, and hangs upsidedown until its wings are dry. Fluids are pumped into wings, and they expand and stiffen. The monarch expands and retracts its wings, and once conditions allow it then flies and feeds on a variety of nectar plants. During the breeding season adults reach sexual maturity in four or five days, however, the migrating generation does not reach maturity until overwintering is complete. Monarchs typically live two through five weeks during their breeding season. Larvae growing in high densities are smaller, have lower survival, and weigh less as adults compared to lower densities.

Healthy males are more likely to mate than unhealthy ones. Females and males typically mate more than once. Females that mate several times lay more eggs. Mating for the overwintering populations occurs in the spring, prior to dispersion. Mating is less dependent on pheromones than other species in its genus.

Courtship occurs in two phases. During the aerial phase, a male pursues and often forces a female to the ground. During the ground phase, the butterflies copulate and remain attached for about 30 through 60 minutes. Only 30% of mating attempts end in copulation, suggesting that females may be able to avoid mating, though some have more success than others. During copulation, a male transfers his spermatophore to a female. Along with sperm, the spermatophore provides a female with nutrition, which aids her in egg-laying. An increase in spermatophore size increases the fecundity of female monarchs. Males that produce larger spermatophores also fertilize more females' eggs.

Adult food sources 8

Although larvae eat only milkweed, adult monarchs feed on the nectar of many plants including:

Monarchs obtain moisture and minerals from damp soil and wet gravel, a behavior known as mud-puddling. The monarch has also been noticed puddling at an oil stain on pavement.

Climate 8

Climate variations during the fall and summer affect butterfly reproduction. Rainfall, and freezing temperatures affect milkweed growth. Omar Vidal, director general of WWF-Mexico, said "The monarch’s lifecycle depends on the climatic conditions in the places where they breed. Eggs, larvae and pupae develop more quickly in milder conditions. Temperatures above 95°F can be lethal for larvae, and eggs dry out in hot, arid conditions, causing a drastic decrease in hatch rate."

Confusion of host plants 8

The black swallow-wort (Cynanchum louiseae) and pale swallow-wort (Cynanchum rossicum) plants are problematic for monarchs in North America. Monarchs lay their eggs on these relatives of native vining milkweed (Cynanchum laeve) because they produce stimuli similar to milkweed. Once the eggs hatch, the caterpillars are poisoned by the toxicity of this invasive plant from Europe.

Conservationists attribute the disappearance of milkweed species to agricultural practices in the Midwest, where genetically modified seeds are bred to resist herbicides that eliminate milkweed nearby. Growers eliminate milkweed that previously grew between the rows of food crops. Corn and soybeans are resistant to the effect of the herbicide glyphosate. The increased use of these crop strains is correlated with the decline in Monarch populations between 1999 and 2010. Chip Taylor, director of Monarch Watch at the University of Kansas, said the Midwest milkweed habitat "is virtually gone" with 120–150 million acres lost. To help fight this problem, Monarch Watch encourages the planting of “Monarch Waystations”. The Natural Resources Defense Council (NRDC) filed a suit in 2015 against the EPA, in which it is argued that the agency ignored warnings about the dangers of glyphosate usage for monarchs.

The area of forest occupied has been declining and reached its lowest level in two decades in 2013. The decline is continuing but is expected to increase during the 2013–2014 season. Mexican environmental authorities continue to monitor illegal logging of the oyamel trees. The Oyamel is a major species of evergreen on which the overwintering butterflies spend a significant time during their winter diapause, or suspended development.

A 2014 study acknowledged that while “the protection of overwintering habitat has no doubt gone a long way towards conserving monarchs that breed throughout eastern North America", their research indicates that habitat loss on breeding grounds in the United States is the main cause of both recent and projected population declines.

Climate variations during the fall and summer affect butterfly reproduction. Rainfall, and freezing temperatures affect milkweed growth. Omar Vidal, director general of WWF-Mexico, said "The monarch’s lifecycle depends on the climatic conditions in the places where they breed. Eggs, larvae and pupae develop more quickly in milder conditions. Temperatures above 95°F can be lethal for larvae, and eggs dry out in hot, arid conditions, causing a drastic decrease in hatch rate."

Conservation 8

The Center for Biological Diversity, the Center for Food Safety, the Xerces Society and Lincoln Brower have filed a petition to the United States Department of the Interior to protect the monarch by having it declared an endangered species.

On June 20, 2014, President Barack Obama issued a Presidential Memorandum entitled "Creating a Federal Strategy to Promote the Health of Honey Bees and Other Pollinators". The Memorandum established a Pollinator Health Task Force, to be co-chaired by the Secretary of Agriculture and the Administrator of the Environmental Protection Agency, and stated:

The number of migrating Monarch butterflies sank to the lowest recorded population level in 2013–14, and there is an imminent risk of failed migration.

In May 2015, the Pollinator Health Task Force issued a "National Strategy to Promote the Health of Honey Bees and Other Pollinators". The Strategy lays out current and planned federal actions to achieve three goals, two of which are:

• Monarch Butterflies: Increase the Eastern population of the monarch butterfly to 225 million butterflies occupying an area of approximately 15 acres (6 hectares) in the overwintering grounds in Mexico, through domestic/international actions and public-private partnerships, by 2020.

• Pollinator Habitat Acreage: Restore or enhance 7 million acres of land for pollinators over the next 5 years through Federal actions and public/private partnerships.

Many of the priority projects that the National Strategy identifies will focus on the I-35 corridor extending for 1,500 miles (2,400 km) from Texas to Minnesota that provides spring and summer breeding habitats in the monarch’s key migration corridor.

Conservationists are lobbying transportation departments and utilities to reduce their use of herbicides and specifically encourage milkweed to grow along roadways and power lines. Reducing roadside mowing and application of herbicides during the butterfly breeding season will encourage milkweed growth. Conservationists lobby agriculture companies to set aside areas that remain unsprayed to allow the butterflies to breed. Butterfly gardening is thought to increase the populations of butterflies.

Efforts to increase monarch populations by establishing butterfly gardens require particular attention to the butterfly's food preferences and population cycles, as well to the conditions needed to propagate milkweed. For example, in the Washington, D.C. area and elsewhere in the northeastern United States, monarchs prefer to reproduce on common milkweed (Asclepias syriaca), especially when its foliage is soft and fresh. As monarch reproduction in that area peaks in late summer when milkweed foliage is old and tough, A. syriaca needs to be cut back at least by half in June to assure that it will be regrowing rapidly when monarch reproduction reaches its peak. In addition, milkweed seed may need a period of cold treatment before it will germinate.

Defense against predators 8

In both caterpillar and butterfly form, monarchs are aposematic—warding off predators with a bright display of contrasting colors to warn potential predators of their undesirable taste and poisonous characteristics.

Large larvae are able to avoid wasp predation by dropping from the plant or by jerking their bodies.

Aposematism Monarchs are foul-tasting and poisonous due to the presence of cardenolide aglycones in their bodies, which the caterpillars ingest as they feed on milkweed. By ingesting a large amount of plants in the genus Asclepias, primarily milkweed, monarch caterpillars are able to sequester cardiac glycosides, or more specifically cardenolides, which are steroids that act in heart-arresting ways similar to digitalis. It has been found that monarchs are able to sequester cardenolides most effectively from plants of intermediate cardenolide content rather than those of high or low content.

Additional studies have shown that different species of milkweed have differing effects on growth, virulence, and transmission of parasites. One species, Asclepias curassavica, appears to reduce the proportion of monarchs infected by parasites. There are two possible explanations for the positive role of A. curassavica on the monarch caterpillar: that it promotes overall monarch health to boost the monarch's immune system; or that chemicals from the plant have a direct negative effect on the parasites.

After the caterpillar becomes a butterfly, the toxin shift to different parts of the body. Since many birds attack the wings of the butterfly, having three times the cardiac glycosides in the wings leaves predators with a very foul taste and may prevent them from ever ingesting the body of the butterfly. In order to combat predators that remove the wings only to ingest the abdomen, monarchs keep the most potent cardiac glycosides in their abdomens.

Mimicry

Monarchs share the defense of noxious taste with the similar-appearing viceroy butterfly in what is perhaps one of the most well-known examples of mimicry. Though long purported to be an example of Batesian mimicry, the viceroy is actually reportedly more unpalatable than the monarch, making this a case of Müllerian mimicry.

Description 8

Commonly and easily mistaken for the similar viceroy butterfly, the monarch’s wingspan ranges from 8.9 to 10.2 centimetres (3.5–4.0 in). The upper sides of the wings are tawny-orange, the veins and margins are black, and in the margins are two series of small white spots. Monarch forewings also have a few orange spots near their tips. Wing undersides are similar, but the tips of forewings and hindwings are yellow-brown instead of tawny-orange and the white spots are larger. The shape and color of the wings change at the beginning of the migration and appear redder and more elongated than later migrants. Wings size and shape differ between migratory and non-migratory monarchs. Monarchs from eastern North America have larger and more angular forewings than those in the western population.

Monarch flight has been described as "slow and sailing".

Adults exhibit sexual dimorphism. Males are slightly larger than females and have a black patch or spot of androconial scales on each hindwing (in some butterflies, these patches disperse pheromones, but are not known to do so in monarchs). The male's black veins on his wings are lighter and narrower than those of females.

One variation, the "white monarch", observed in Australia, New Zealand, Indonesia and the United States, is called nivosus by lepidopterists. It is grayish-white in all areas of its wings that are normally orange and is only about 1% or less of all monarchs, but populations as high as 10% exist on Oahu in Hawaii.

The monarch has six legs like all insects, but uses its middle legs and hindlegs as it carries its two forelegs against its body.

Eggs 8

The eggs are derived from materials ingested as a larva and from the spermataphores received from males during mating. Eggs are laid singly on the underside of a young leaf of a milkweed plant during the spring and summer months. The eggs are cream-colored or light green, ovate to conical in shape, and about 1.2×0.9 mm in size. The eggs weigh less than 0.5 mg each and have raised ridges that form longitudinally from the point to apex to the base. Though each egg is 1/1000th the mass of the female, she may lay up to her own mass in eggs. Females lay smaller eggs as they age. Larger females lay larger eggs. The number of eggs laid by a female, who may mate several times, ranges from 290 to 1180. Females lay their eggs on milkweed that make their offspring less sick. Eggs take 3 to 8 days to develop and hatch into larva or caterpillars.Monarchs will lay eggs along the southern migration route.

Habitat 8

Overwintering populations of D. plexippus are found in Mexico, California, along the Gulf coast, year-round in Florida, and in Arizona where the habitat has the specific conditions necessary for their survival. Their overwintering habitat typically provides access to streams, plenty of sunlight (enabling body temperatures that allow flight), and appropriate roosting vegetation, and is relatively free of predators. Overwintering, roosting butterflies have been seen on basswoods, elms, sumacs, locusts, oaks, osage-oranges, mulberries, pecans, willows, cottonwoods, and mesquites. While breeding, monarch habitats can be found in agricultural fields, pasture land, prairie remnants, urban and suburban residential areas, gardens, trees, and roadsides – anywhere where there is access to larval host plants. Habitat restoration is a primary goal in monarch conservation efforts. Habitat requirements change during migration. During the fall migration, butterflies must have access to nectar-producing plants. During the spring migration, butterflies must have access to larval food plants and nectar plants.

Habitat loss due to herbicide use 8

Conservationists attribute the disappearance of milkweed species to agricultural practices in the Midwest, where genetically modified seeds are bred to resist herbicides that eliminate milkweed nearby. Growers eliminate milkweed that previously grew between the rows of food crops. Corn and soybeans are resistant to the effect of the herbicide glyphosate. The increased use of these crop strains is correlated with the decline in Monarch populations between 1999 and 2010.

Chip Taylor, director of Monarch Watch at the University of Kansas, said the Midwest milkweed habitat "is virtually gone" with 120–150 million acres lost. To help fight this problem, Monarch Watch encourages the planting of “Monarch Waystations”. The Natural Resources Defense Council (NRDC) filed a suit in 2015 against the EPA, in which it is argued that the agency ignored warnings about the dangers of glyphosate usage for monarchs.

Larvae 8

The caterpillar goes through five major, distinct stages of growth and after each one, it molts. Each caterpillar, or instar, that molts is larger than the previous as it eats and stores energy in the form of fat and nutrients to carry it through the nonfeeding pupal stage.

The first instar caterpillar that emerges out of the egg is pale green and translucent. It lacks banding coloration or tentacles. The larvae or caterpillar eats its egg case and begins to feed on milkweed. It is during this stage of growth that the caterpillar begins to sequester cardenolides. The circular motion a caterpillar uses while eating milkweed prevents the flow of latex that could entrap it.

The second instar larva develops a characteristic pattern of white, yellow and black transverse bands. It is no longer translucent but is covered in short setae. Pairs of black tentacles (stinkhorns) begin to grow. One pair grows on the thorax and another pair on the abdomen.

The third instar larva has more distinct bands and the two pairs of tentacles become longer. Legs on the thorax differentiate into a smaller pair near the head and larger pairs further back. These third stage caterpillars began to eat along the leaf edges.

The fourth instar has a different banding pattern. It develops white spots on the prolegs near the back of the caterpillar.

The fifth instar larva has a more complex banding pattern and white dots on the prolegs, with front legs that are small and very close to the head.

At this stage of development, it is relatively large compared to the earlier instars. The caterpillar completes its growth. At this point, it is 25 to 45 mm long and 5 to 8 mm wide. This can be compared to the first instar, which was 2 to 6 mm long and 0.5 to 1.5 mm wide. Fifth instar larvae increase 2000 times from first instars. Fifth-stage instar larva chew through the petiole or mid-rev of milkweed leaves and stop the flow of latex. After this, they eat more leaf tissue. Before pupation, larva must consume milkweed to increase their mass. Larva stop feeding and search for a pupation site. The caterpillar attaches itself securely to a horizontal surface, using a silk pad. At this point, it latches on with its hind legs and hangs down. It then molts into an opaque, blue-green chrysalis with small gold dots. At normal summer temperatures, it matures in a few weeks. The cuticle of the chrysalis becomes transparent and the monarch's characteristic orange and black wings become visible. At the end of metamorphosis, the adult emerges from the chrysalis, expands and dries its wings and flies away. Monarch metamorphosis from egg to adult occurs during the warm summer temperatures in as little as 25 days, extending to as many as seven weeks during cool spring conditions. During the development, both larva and their milkweed hosts are vulnerable to weather extremes, predators, parasites and diseases; commonly fewer than 10% of monarch eggs and caterpillars survive.

Larval host plants 8

The host plants used by the monarch caterpillar include:

Asclepias curassavica has been planted as an ornamental and naturalized. Its distribution is probably worldwide. Year-round plantings may be the cause of new overwintering sites along the Gulf coast and in Spain. Needs Citation.

Life cycle 8

The monarch undergoes the four stages of complete metamorphosis:

The eggs are derived from materials ingested as a larva and from the spermataphores received from males during mating. Eggs are laid singly on the underside of a young leaf of a milkweed plant during the spring and summer months. The eggs are cream-colored or light green, ovate to conical in shape, and about 1.2×0.9 mm in size. The eggs weigh less than 0.5 mg each and have raised ridges that form longitudinally from the point to apex to the base. Though each egg is 1/1000th the mass of the female, she may lay up to her own mass in eggs. Females lay smaller eggs as they age. Larger females lay larger eggs. The number of eggs laid by a female, who may mate several times, ranges from 290 to 1180. Females lay their eggs on milkweed that make their offspring less sick. Eggs take 3 to 8 days to develop and hatch into larva or caterpillars.Monarchs will lay eggs along the southern migration route.

The caterpillar goes through five major, distinct stages of growth and after each one, it molts. Each caterpillar, or instar, that molts is larger than the previous as it eats and stores energy in the form of fat and nutrients to carry it through the nonfeeding pupal stage.

The first instar caterpillar that emerges out of the egg is pale green and translucent. It lacks banding coloration or tentacles. The larvae or caterpillar eats its egg case and begins to feed on milkweed. It is during this stage of growth that the caterpillar begins to sequester cardenolides. The circular motion a caterpillar uses while eating milkweed prevents the flow of latex that could entrap it.

The second instar larva develops a characteristic pattern of white, yellow and black transverse bands. It is no longer translucent but is covered in short setae. Pairs of black tentacles (stinkhorns) begin to grow. One pair grows on the thorax and another pair on the abdomen.

The third instar larva has more distinct bands and the two pairs of tentacles become longer. Legs on the thorax differentiate into a smaller pair near the head and larger pairs further back. These third stage caterpillars began to eat along the leaf edges.

The fourth instar has a different banding pattern. It develops white spots on the prolegs near the back of the caterpillar.

The fifth instar larva has a more complex banding pattern and white dots on the prolegs, with front legs that are small and very close to the head.

At this stage of development, it is relatively large compared to the earlier instars. The caterpillar completes its growth. At this point, it is 25 to 45 mm long and 5 to 8 mm wide. This can be compared to the first instar, which was 2 to 6 mm long and 0.5 to 1.5 mm wide. Fifth instar larvae increase 2000 times from first instars. Fifth-stage instar larva chew through the petiole or mid-rev of milkweed leaves and stop the flow of latex. After this, they eat more leaf tissue. Before pupation, larva must consume milkweed to increase their mass. Larva stop feeding and search for a pupation site. The caterpillar attaches itself securely to a horizontal surface, using a silk pad. At this point, it latches on with its hind legs and hangs down. It then molts into an opaque, blue-green chrysalis with small gold dots. At normal summer temperatures, it matures in a few weeks. The cuticle of the chrysalis becomes transparent and the monarch's characteristic orange and black wings become visible. At the end of metamorphosis, the adult emerges from the chrysalis, expands and dries its wings and flies away. Monarch metamorphosis from egg to adult occurs during the warm summer temperatures in as little as 25 days, extending to as many as seven weeks during cool spring conditions. During the development, both larva and their milkweed hosts are vulnerable to weather extremes, predators, parasites and diseases; commonly fewer than 10% of monarch eggs and caterpillars survive.

In the pupa or chrysalis stage, the caterpillar spins a silk pad on to a horizontal substrate. It then hangs from the pad by the last pair of prolegs upside down, resembling the letter 'J'. It sheds its skin, leaving itself encased in an articulated green exoskeleton. During this pupal stage, the adult butterfly forms inside. The exoskeleton becomes transparent before it ecloses (emerges), and its adult colors can finally be seen.

An adult butterfly emerges after about two weeks as a chyrsalid, and hangs upsidedown until its wings are dry. Fluids are pumped into wings, and they expand and stiffen. The monarch expands and retracts its wings, and once conditions allow it then flies and feeds on a variety of nectar plants. During the breeding season adults reach sexual maturity in four or five days, however, the migrating generation does not reach maturity until overwintering is complete. Monarchs typically live two through five weeks during their breeding season. Larvae growing in high densities are smaller, have lower survival, and weigh less as adults compared to lower densities.

Healthy males are more likely to mate than unhealthy ones. Females and males typically mate more than once. Females that mate several times lay more eggs. Mating for the overwintering populations occurs in the spring, prior to dispersion. Mating is less dependent on pheromones than other species in its genus.

Courtship occurs in two phases. During the aerial phase, a male pursues and often forces a female to the ground. During the ground phase, the butterflies copulate and remain attached for about 30 through 60 minutes. Only 30% of mating attempts end in copulation, suggesting that females may be able to avoid mating, though some have more success than others. During copulation, a male transfers his spermatophore to a female. Along with sperm, the spermatophore provides a female with nutrition, which aids her in egg-laying. An increase in spermatophore size increases the fecundity of female monarchs. Males that produce larger spermatophores also fertilize more females' eggs.

Egg

Caterpillar

Beginning pupation

Chrysalis

Emerging from chrysalis

Mating

Laying eggs

Loss of overwintering habitat 8

The area of forest occupied has been declining and reached its lowest level in two decades in 2013. The decline is continuing but is expected to increase during the 2013–2014 season. Mexican environmental authorities continue to monitor illegal logging of the oyamel trees. The Oyamel is a major species of evergreen on which the overwintering butterflies spend a significant time during their winter diapause, or suspended development.

A 2014 study acknowledged that while “the protection of overwintering habitat has no doubt gone a long way towards conserving monarchs that breed throughout eastern North America", their research indicates that habitat loss on breeding grounds in the United States is the main cause of both recent and projected population declines.

Migration 8

In the U.S., the eastern population migrates both north and south on an annual basis. The population east of the Rocky Mountains migrates to the sanctuaries of the Mariposa Monarca Biosphere Reserve in Mexico. The western population overwinters in various coastal sites in central and southern California. The overwintered population of those east of the Rockies may reach as far north as Texas and Oklahoma during the spring migration. The second, third and fourth generations return to their northern locations in the United States and Canada in the spring. Commercially bred monarchs migrate to overwintering sites in Mexico adding to already existing data of migratory behavior. Not all monarchs in the eastern population migrate to Mexico. Recent discoveries have located monarch overwintering sites in Arizona.

North America 8

Asclepias curassavica has been planted as an ornamental and naturalized. Its distribution is probably worldwide. Year-round plantings may be the cause of new overwintering sites along the Gulf coast and in Spain. Needs Citation.

Parasites 8

Parasites include the tachinid flies Sturmia convergens and Lespesia archippivora. Lesperia-parasitized butterfly larvae complete the formation of their crysalid but die before they emerge as an adult. Before pupation is complete, one white maggot comes out of the chrysalid. The maggot forms a brown pupa on the ground then emerges as an adult.

The bacterium Micrococcus flacidifex danai also infects larvae. Just before pupation, the larvae migrate to a horizontal surface and die a few hours later, attached only by one pair of prolegs, with the thorax and abdomen hanging limp. The body turns black shortly after. The bacterium Pseudomonas aeruginosa has no invasive powers, but causes secondary infections in weakened insects. It is a common cause of death in laboratory-reared insects.

The protozoanOphryocystis elektroscirrha is another parasite of the monarch. It infects the subcutaneous tissues and propagates by spores formed during the pupal stage. The spores are found over all of the body of infected butterflies, with the greatest number on the abdomen. These spores are passed, from female to caterpillar, when spores rub off during egg-laying and are then ingested by caterpillars. Severely infected individuals are weak, unable to expand their wings, or unable to eclose, and have shortened lifespans, but parasite levels vary in populations. This is not the case in laboratory rearing, where after a few generations, all individuals can be infected. Infection with this parasite creates an effect known as culling whereby migrating monarchs that are infected are less likely to complete the migration. This results in overwintering populations with lower parasite loads. The control of the parasite can be controlled in commercial breeding operations.

Predators 8

Larvae feed exclusively on milkweed and consume protective cardiac glycosides. Toxin levels in Asclepias species vary. Not all monarchs are unpalatable, but exhibit Batesian or automimics. Cardiac glycosides levels are higher in the abdomen and wings. Some predators can differentiate between these parts and consume the most palatable ones. Bird predators include brown thrashers, grackles, robins, cardinals, sparrows, scrub jays, pinyon jays,black-headed grosbeak, and orioles.

Several species of birds have acquired methods that allow them to ingest monarchs without experiencing the ill effects associated with the cardiac glycosides. The oriole is able to eat the monarch through an exaptation of its feeding behavior that gives it the ability to identify cardenolides by taste and reject them. The grosbeak, on the other hand, has adapted the ability an insensitivity to secondary plant poisons that allows it to ingest monarchs without vomiting. As a result, orioles and grosbeaks will periodically have high levels of cardenolides in their bodies, and they will be forced to go on periods of reduced monarch consumption. This cycle of predation effectively reduces the potential predation of monarchs by 50 percent and indicates that monarch aposematism has a legitimate purpose.

Some mice are able to withstand large doses of the toxin. Overwintering adults become less toxic over time making them more vulnerable to predators. In Mexico, about 14% of the overwintering monarchs are eaten by birds and mice.

In North America, eggs and first instar larvae of the monarch are eaten by larvae and adults of the introduced Asian lady beetle (Harmonia axyridis). The Chinese mantis (Tenodera sinensis) will consume the larvae once the gut is removed thus avoiding cardenolides. Wasps commonly consume larvae.

On Oahu, a white morph of the monarch has emerged. This is because of the introduction, in 1965 and 1966, of two bulbul species, Pycnonotus cafer and Pycnonotus jocosus. They are now the most common insectivore birds, and probably the only ones preying on insects as large as the monarch. Monarchs in Hawaii are known to have low cardiac glycoside levels, but the birds may also be tolerant of the chemical. The two species hunt the larvae and some pupae from the branches and undersides of leaves in milkweed bushes. The bulbuls also eat resting and ovipositing adults, but rarely flying ones. Because of its colour, the white morph has a higher survival rate than the orange one. This is either because of apostatic selection (i.e. the birds have learned the orange monarchs can be eaten), because of camouflage (the white morph matches the white pubescence of milkweed or the patches of light shining through foliage), or because the white morph does not fit the bird's search image of a typical monarch, so is thus avoided.

Range 8

The range of the western and eastern populations of the monarch butterfly expands and contracts depending upon the season. The range differs between breeding areas, migration routes, and winter roosts.

In North America, the monarch ranges from southern Canada through northern South America. It has also been found in Bermuda, Cook Islands, Hawaii, Cuba and other Caribbean islands the Solomons, New Caledonia, New Zealand, Papua New Guinea, Australia, New Guinea, Sri Lanka, India, Nepal, the Azores, the Canary Islands, South Africa, Gibraltar, Philippines, North Africa and Honolulu. It appears in the UK in some years as an accidental migrant. No genetic differences between monarch populations exist. Reproductive isolation has not created subspecies.

Reproduction 8

Healthy males are more likely to mate than unhealthy ones. Females and males typically mate more than once. Females that mate several times lay more eggs. Mating for the overwintering populations occurs in the spring, prior to dispersion. Mating is less dependent on pheromones than other species in its genus.

Courtship occurs in two phases. During the aerial phase, a male pursues and often forces a female to the ground. During the ground phase, the butterflies copulate and remain attached for about 30 through 60 minutes. Only 30% of mating attempts end in copulation, suggesting that females may be able to avoid mating, though some have more success than others. During copulation, a male transfers his spermatophore to a female. Along with sperm, the spermatophore provides a female with nutrition, which aids her in egg-laying. An increase in spermatophore size increases the fecundity of female monarchs. Males that produce larger spermatophores also fertilize more females' eggs.

Status 8

The monarch butterfly is not currently listed under the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) or protected specifically under U.S. domestic laws. On 14 August 2014, the Center for Biological Diversity and the Center for Food Safety filed a legal petition requesting Endangered Species Act protection for the monarch and its habitat. The U.S. Fish and Wildlife Service initiated a Status Review of the Monarch Butterfly under the Endangered Species Act with a due date for information submission of March 3, 2015.

The monarch butterfly is listed as a Species of Special Concern in Ontario.

Taxonomy 8

The name "monarch" may be in honor of King William III of England. The monarch was originally described by Linnaeus in his Systema Naturae of 1758 and placed in the genus Papilio. In 1780, Jan Krzysztof Kluk used the monarch as the type species for a new genus Danaus.

There are three species of monarch butterflies:

Six subspecies and two color morphs of D. plexippus have been identified:

The percentage of the white morph in Oahu is nearing 10%. On other Hawaiian islands, the white morph occurs at a relatively low frequency. White monarchs (nivosus) have been found throughout the world, including Australia, New Zealand, Indonesia, and the United States.

Some taxonomists disagree on these classifications.

Monarchs were classified under the family Danaidae, but have been re-classified under Nymphalidae since at least 1958.

Threats 8

There is increasing concern related to the ongoing decline of monarchs; based on a 2014 twenty-year comparison, the population west of the Rocky Mountains has dropped more than 50 percent since 1997 and the numbers east of the Rockies have declined by more than 90 percent since 1995.

In February 2015, the U.S. Fish and Wildlife Service provided a statistic showing that nearly a billion monarchs have vanished since 1990. One of the main reasons cited was the herbicides used by farmers and homeowners on milkweed, a plant used as a food source, a home and a nursery by the monarchs.

Larvae feed exclusively on milkweed and consume protective cardiac glycosides. Toxin levels in Asclepias species vary. Not all monarchs are unpalatable, but exhibit Batesian or automimics. Cardiac glycosides levels are higher in the abdomen and wings. Some predators can differentiate between these parts and consume the most palatable ones. Bird predators include brown thrashers, grackles, robins, cardinals, sparrows, scrub jays, pinyon jays,black-headed grosbeak, and orioles.

Several species of birds have acquired methods that allow them to ingest monarchs without experiencing the ill effects associated with the cardiac glycosides. The oriole is able to eat the monarch through an exaptation of its feeding behavior that gives it the ability to identify cardenolides by taste and reject them. The grosbeak, on the other hand, has adapted the ability an insensitivity to secondary plant poisons that allows it to ingest monarchs without vomiting. As a result, orioles and grosbeaks will periodically have high levels of cardenolides in their bodies, and they will be forced to go on periods of reduced monarch consumption. This cycle of predation effectively reduces the potential predation of monarchs by 50 percent and indicates that monarch aposematism has a legitimate purpose.

Some mice are able to withstand large doses of the toxin. Overwintering adults become less toxic over time making them more vulnerable to predators. In Mexico, about 14% of the overwintering monarchs are eaten by birds and mice.

In North America, eggs and first instar larvae of the monarch are eaten by larvae and adults of the introduced Asian lady beetle (Harmonia axyridis). The Chinese mantis (Tenodera sinensis) will consume the larvae once the gut is removed thus avoiding cardenolides. Wasps commonly consume larvae.

On Oahu, a white morph of the monarch has emerged. This is because of the introduction, in 1965 and 1966, of two bulbul species, Pycnonotus cafer and Pycnonotus jocosus. They are now the most common insectivore birds, and probably the only ones preying on insects as large as the monarch. Monarchs in Hawaii are known to have low cardiac glycoside levels, but the birds may also be tolerant of the chemical. The two species hunt the larvae and some pupae from the branches and undersides of leaves in milkweed bushes. The bulbuls also eat resting and ovipositing adults, but rarely flying ones. Because of its colour, the white morph has a higher survival rate than the orange one. This is either because of apostatic selection (i.e. the birds have learned the orange monarchs can be eaten), because of camouflage (the white morph matches the white pubescence of milkweed or the patches of light shining through foliage), or because the white morph does not fit the bird's search image of a typical monarch, so is thus avoided.

Parasites include the tachinid flies Sturmia convergens and Lespesia archippivora. Lesperia-parasitized butterfly larvae complete the formation of their crysalid but die before they emerge as an adult. Before pupation is complete, one white maggot comes out of the chrysalid. The maggot forms a brown pupa on the ground then emerges as an adult.

The bacterium Micrococcus flacidifex danai also infects larvae. Just before pupation, the larvae migrate to a horizontal surface and die a few hours later, attached only by one pair of prolegs, with the thorax and abdomen hanging limp. The body turns black shortly after. The bacterium Pseudomonas aeruginosa has no invasive powers, but causes secondary infections in weakened insects. It is a common cause of death in laboratory-reared insects.

The protozoanOphryocystis elektroscirrha is another parasite of the monarch. It infects the subcutaneous tissues and propagates by spores formed during the pupal stage. The spores are found over all of the body of infected butterflies, with the greatest number on the abdomen. These spores are passed, from female to caterpillar, when spores rub off during egg-laying and are then ingested by caterpillars. Severely infected individuals are weak, unable to expand their wings, or unable to eclose, and have shortened lifespans, but parasite levels vary in populations. This is not the case in laboratory rearing, where after a few generations, all individuals can be infected. Infection with this parasite creates an effect known as culling whereby migrating monarchs that are infected are less likely to complete the migration. This results in overwintering populations with lower parasite loads. The control of the parasite can be controlled in commercial breeding operations.

The black swallow-wort (Cynanchum louiseae) and pale swallow-wort (Cynanchum rossicum) plants are problematic for monarchs in North America. Monarchs lay their eggs on these relatives of native vining milkweed (Cynanchum laeve) because they produce stimuli similar to milkweed. Once the eggs hatch, the caterpillars are poisoned by the toxicity of this invasive plant from Europe.

Conservationists attribute the disappearance of milkweed species to agricultural practices in the Midwest, where genetically modified seeds are bred to resist herbicides that eliminate milkweed nearby. Growers eliminate milkweed that previously grew between the rows of food crops. Corn and soybeans are resistant to the effect of the herbicide glyphosate. The increased use of these crop strains is correlated with the decline in Monarch populations between 1999 and 2010. Chip Taylor, director of Monarch Watch at the University of Kansas, said the Midwest milkweed habitat "is virtually gone" with 120–150 million acres lost. To help fight this problem, Monarch Watch encourages the planting of “Monarch Waystations”. The Natural Resources Defense Council (NRDC) filed a suit in 2015 against the EPA, in which it is argued that the agency ignored warnings about the dangers of glyphosate usage for monarchs.

The area of forest occupied has been declining and reached its lowest level in two decades in 2013. The decline is continuing but is expected to increase during the 2013–2014 season. Mexican environmental authorities continue to monitor illegal logging of the oyamel trees. The Oyamel is a major species of evergreen on which the overwintering butterflies spend a significant time during their winter diapause, or suspended development.

A 2014 study acknowledged that while “the protection of overwintering habitat has no doubt gone a long way towards conserving monarchs that breed throughout eastern North America", their research indicates that habitat loss on breeding grounds in the United States is the main cause of both recent and projected population declines.

Climate variations during the fall and summer affect butterfly reproduction. Rainfall, and freezing temperatures affect milkweed growth. Omar Vidal, director general of WWF-Mexico, said "The monarch’s lifecycle depends on the climatic conditions in the places where they breed. Eggs, larvae and pupae develop more quickly in milder conditions. Temperatures above 95°F can be lethal for larvae, and eggs dry out in hot, arid conditions, causing a drastic decrease in hatch rate."

Sources and Credits

  1. (c) TexasEagle, some rights reserved (CC BY-NC), http://www.flickr.com/photos/10789832@N00/2972095940
  2. (c) Ted Kropiewnicki, some rights reserved (CC BY-NC-SA), http://tolweb.org/tree/ToLimages/monarch(danausplexippus)male2b.jpg
  3. (c) Kent McFarland, some rights reserved (CC BY-NC), http://farm9.staticflickr.com/8034/7921175342_b03608270b_o.jpg
  4. (c) cyric, some rights reserved (CC BY-NC-SA), uploaded by cyric, https://www.inaturalist.org/photos/163819
  5. (c) Ron Payne, some rights reserved (CC BY-NC), http://lh3.ggpht.com/-ZyhaoH8aSLA/UCLglf1LxWI/AAAAAAAABOQ/E3P5Wp3_hZY/s1024/IMG_8422.JPG
  6. (c) BJ Stacey, some rights reserved (CC BY-NC), http://farm3.staticflickr.com/2813/9082739568_10a28aa5bf_o.jpg
  7. Adapted by Allie Hay from a work by (c) Wikipedia, some rights reserved (CC BY-SA), http://en.wikipedia.org/wiki/Danaus_plexippus
  8. (c) Wikipedia, some rights reserved (CC BY-SA), http://en.wikipedia.org/wiki/Monarch_butterfly

More Info