Purple Loosestrife

Lythrum salicaria

Summary 7

Lythrum salicaria (Purple loosestrife) is a flowering plant belonging to the family Lythraceae, native to Europe, Asia, northwest Africa, and southeastern Australia. It should not be confused with other plants sharing the name loosestrife that are members of the family Primulaceae. Other names include spiked loosestrife, or purple lythrum.

Ecological threat in the united states 8

Purple loosestrife adapts readily to natural and disturbed wetlands. As it establishes and expands, it outcompetes and replaces native grasses, sedges, and other flowering plants that provide a higher quality source of nutrition for wildlife. The highly invasive nature of purple loosestrife allows it to form dense, homogeneous stands that restrict native wetland plant species, including some federally endangered orchids, and reduce habitat for waterfowl.

Control 9

Please contact your local agricultural extension specialist or county weed specialist to learn what works best in your area and how to use it safely. Always read label and safety instructions for each control method. Trade names and control measures appear in this document only to provide specific information. USDA, NRCS does not guarantee or warranty the products and control methods named, and other products may be equally effective.

An important consideration in controlling purple loosestrife is its prolific seed production, the ease with which seeds are dispersed, and their ability to remain viable for several years. Also, this plant can spread vegetatively by resprouting from stem and rootstock cuttings. Other considerations in selecting control methods are their detrimental effects on native species and the possibility for reinvasion by purple loosestrife or other exotic species. In addition, native plants of similar appearance should not be subjected to control. Purple loosestrife may superficially resemble plants of the mint family or species of the genera Epilobium and Liatris. Proper identification is an important consideration in controlling exotic loosestrife.

In natural areas, it may be more feasible to contain populations of purple loosestrife than control them. Large populations extending over one hectare or more will be difficult to eradicate. Containing them may be more feasible. Removing plants or applying herbicides to ones extending beyond the main population can accomplish this. If loosestrife cannot be eradicated, efforts should then concentrate on keeping it from invading the highest quality areas (Butterfield et al., 1996.

Manual, Mechanical, and Replacement: Mowing, burning, and flooding are largely ineffective. Cutting followed by flooding so that cut plant stalks are completely immersed has shown some success. However, flooding may encourage the spread of purple loosestrife seed present in the soil and may result in the regeneration of new plants from stem fragments. Mature plants can withstand short-term immersion. Burning is largely ineffective and it may also stress native plants and subsequently enhance loosestrifes’ competitive advantage (Butterfield et al., 1996).

Hand removal is effective for small populations and isolated plants. Younger plants (one to two years old) can be pulled by hand. Plants should be removed, prior to seed set, with minimal disturbance to the soil. Removal after seed-set will scatter the seeds. The entire rootstock must be pulled out because of the potential for regeneration from root fragments. A hand cultivator or similar implement will be helpful for older plants, especially those in deep organic soils. Uprooted plants and broken stems need to be removed from the site since such fragments can re-sprout. Bagging plants for removal will prevent their spread along the exit route. Follow-up treatments are recommended for three years after plants are removed. Clothing and equipment used during plant removal should be cleaned to remove contaminating seeds.

Replacement control has been attempted in several wildlife refuges. Research has shown that Japanese millet (Echinochloa frumentacea Link) seedlings outcompete purple loosestrife seedlings. The millet must be planted immediately after marsh drawdown and replanted each year because it does not regenerate well. Replacement seeding trials using native pale smartweed (Polygonum lapathifolium L.) showed that it also out-competed purple loosestrife. Replacement methods have obvious limited application in natural areas, but they may provide control of loosestrife populations on bordering property (Butterfield et al. 1996).

Herbicide Control: Various chemical treatments have been used on purple loosestrife with varying success. Many herbicides are not specific to purple loosestrife and may not be specifically licensed for such use. Label directions for application and use according to local, state, and federal regulations must always be observed.

In areas with populations exceeding 100 plants (up to 1.6 ha in size) where hand-pulling is not feasible, application of a glyphosate herbicide to individual purple loosestrife plants provides effective control Glyphosate is available under the trade names Roundup® and Rodeo®. Rodeo is registered for use over open water and is the most commonly used herbicide to control purple loosestrife. Glyphosate is nonselective and can kill desirable plants associated with loosestrife if applied carelessly. Application to the tops of plants alone can be effective and limits exposure of non-target species (Butterfield et al. 1996).

Herbicide treatment should be conducted as early as possible during the manufacturer's recommended time of application in order to kill the plants and prevent seed production. Application is most effective when plants have just begun flowering. Timing is important because seed set can occur if plants are in mid- to late flower. Where possible, the flower heads should be cut, bagged, and removed from the site prior to application to prevent seed set. Rodeo applied as a 1.5% solution (2 oz. Rodeo/gallon clean water) with the addition of a wetting agent, as specified on the label has been shown to provide control. Another option, which may be more effective, is to apply glyphosate twice during the growing season. The plants should be sprayed as described above when flowering has just started and a second time two to three weeks later (Butterfield et al. 1996).

Application of ghyphosate from a vehicle-mounted sprayer is generally necessary in areas with extensive stands of purple loosestrife. The most effective control can be achieved by beginning treatment at the periphery of large patches and working toward the center in successive years. This technique allows native vegetation to re-invade the treated area as the loosestrife in eliminated (Butterfield et al. 1996).

A combination of 2,4-D and Banvel® (dicamba) has been used on a limited basis. This formulation is broadleaf specific and apparently would not hurt the dominants if sprayed in a cattail marsh or communities dominated by rushes, sedges, and grasses. Spraying produces good control once loosestrife has reached 10-15% of its mature growth. Treatment is more effective if repeated once during the growing season (Butterfield et al. 1996).

Biological Control: Several biological control agents have the potential to aid in the control of purple loosestrife. Of 120 species of phytophagous insects associated with purple loosestrife in its natural range in Europe, 14 species were considered host-specific to the target plant. From this group, six species have been selected as the most promising for biological control. These species were a root-mining weevil, Hylobius transversovittatus Goeze, which attacks the main storage tissue of purple loosestrife; two leaf-eating beetles, Galerucella calmariensis L., and G. pusilla Duftschmid, which are capable of completely defoliating the plant; two flower-feeding beetles, Nanophyes marmoratus Goeze and N. brevis Boheman, which severely reduce seed production; and a gall midge, Bayeriola salicariae Kieffer, which similarly reduces seed production by attacking the flower buds. Five of the six species are found throughout its range in Europe and the sixth, N. brevis, is restricted to southern Europe (Malecki et al. 1993; Weedin et al. 1996).

The most promising insects appear to be the root-mining weevil, H. transversovittatus, and the two leaf-eating beetles, G. calmariensis and G. pusilla, because of their broad geographic ranges and the amount of damage done to the host plant. In June of 1992, all three species were approved by USDA, APHIS for introduction into the United States. The insects were released in New York, Pennsylvania, Maryland, Virginia, Minnesota, Oregon, and Washington. Releases were also approved in Canada (Malecki et al. 1993).

The two Galerucella species successfully over-wintered and began oviposition at all release sites. The other species, H. transversovittatus, was proving more difficult to establish, because of its long life cycle and low fecundity. The investigators predict that all three species will become established throughout the North American range of purple loosestrife. Furthermore, H. transversovittatus is expected to have the greatest negative impact to L. salicaria. However, a combination of various phytophagous insects will provide greater control than any one species. Control of purple loosestrife will be achieved more rapidly in mixed plant communities where competition for space and nutrients is greater. A reduction in the abundance of purple loosestrife to approximately 10% of its current level over about 90% of its range is expected (Malecki et al. 1993).

In order to evaluate the potential of fungus pathogens to control purple loosestrife, a survey was conducted on fungi associated with that plant. During the three year study, 5265 fungal isolates were obtained. Thirty-one taxa were found that had not previously been reported from purple loosestrife. Tests for the pathogenicity to purple loosestrife are being tested (Nyvall 1995).

Ecological threat in the united states 8

Purple loosestrife adapts readily to natural and disturbed wetlands. As it establishes and expands, it outcompetes and replaces native grasses, sedges, and other flowering plants that provide a higher quality source of nutrition for wildlife. The highly invasive nature of purple loosestrife allows it to form dense, homogeneous stands that restrict native wetland plant species, including some federally endangered orchids, and reduce habitat for waterfowl.

Impacts and control 10

More info for the terms: adventitious, association, bog, competition, cover, density, fire management, genet, invasive species, marsh, natural, presence, root crown, rootstock, swamp

Impacts: Purple loosestrife can be highly competitive, often reported as occurring in dense, monospecific stands, with the potential to dominate wetland plant communities where it occurs (see Successional Status) [1,41,65,66,78,129,136,137]. While it is evident that invading purple loosestrife may have harmful impacts on native flora and fauna, more research is needed to clarify the extent of these impacts. Hager and McCoy [47] and Anderson [2] provide critical reviews of literature describing purported negative impacts caused by purple loosestrife in North America. Both papers express concern that widespread claims of ecological harm caused by purple loosestrife are largely unproven. In a widely cited review of purple loosestrife literature in North America, Thompson and others [129] describe encroachment of purple loosestrife around the margins of a waterfowl impoundment in central New York. Their estimates of percent of total plant biomass contributed by purple loosestrife along dike areas of the impoundments describe "dramatic" increases over about a 15-year period. Based on visual estimates of plant biomass, the authors contend that native plant species were displaced, vegetation structure was altered, and habitat quality for nesting waterfowl was seriously degraded. The paper by Thompson and others [129] demonstrates how untested hypotheses can be perpetuated in the literature until they become widely accepted, without the benefit of experimental analysis [47]. As emphasized by Anderson [2], "detailed, quantitative data are needed to understand loosestrife's natural history, population dynamics, and impacts on native ecosystems if we are to effectively manage this plant."

Because purple loosestrife has demonstrated strong competitive abilities where it has invaded North American wetland communities, there is concern that it may diminish native plant diversity. For instance, competition with purple loosestrife has been suggested as a contributing factor in the decline of the rare Long's bulrush (Scirpus longii) in Massachusetts [28]. However, studies published to date have failed to demonstrate a deleterious effect of purple loosestrife on native plant diversity. Treberg and Husband [130] examined the association between purple loosestrife abundance and vascular plant richness along the Bar River in Ontario. Purple loosestrife had been present in this area for at least 12 years and there was a wide range in established plant densities. They found no significant (P<0.05) difference in mean species richness associated with the presence or percent cover of purple loosestrife, and no plant species was significantly (P<0.05) more likely to be found in the absence of purple loosestrife than in its presence. Anderson [1] showed no significant (P<0.05) correlation between total species richness and either percent cover, genet density or median age of purple loosestrife, even in plots containing 18-20 year old purple loosestrife plants. He suggested areas with apparent purple loosestrife monocultures perhaps had low species richness to begin with, and species richness more likely resulted from habitat heterogeneity rather than the presence of innately competitive species. More research is needed in this area.

Purple loosestrife colonization has been purported to have detrimental effects on birds, based on: a) creation of unsuitable nesting habitat and b) low food potential of purple loosestrife relative to vegetation it displaces. However, published studies and observations indicate impacts on birds are not yet clear. Marsh wrens prefer cattails to purple loosestrife for nesting [101,142]. There is speculation that invasion of riparian areas in Nebraska may have adverse effects on important night-roosting habitat for migratory sandhill cranes. Purple loosestrife invasion is predicted to have detrimental effects on nesting habitat of black terns and canvasbacks in the north-central United States, but this has not been tested [129]. Whitt et al. [142] found purple loosestrife-dominated habitats had significantly (P=0.003) higher bird densities but significantly (P=0.03) fewer bird species than other habitats. These higher densities were mainly due to increases in populations of a single species, the swamp sparrow.

Purple loosestrife colonization can substantially reduce or eliminate open water in small marsh areas, potentially reducing its usefulness for waterfowl. In areas with substantial seed banks, mudflats that are commonly used as feeding areas by shorebirds are impacted by rapid, dense colonization by purple loosestrife seedlings. Decline in the extent of open water habitats from increased emergent purple loosestrife can retard access to aquatic prey items such as fish and aquatic invertebrates. Important aquatic food plants for wildlife such as pondweeds (Potamogeton spp.) are inhibited under the shade of emergent purple loosestrife [102]. Invading purple loosestrife in coastal British Columbia's Fraser River estuary may have negative effects on detrital food chains [44].

Thompson and others [129] have illustrated how muskrats might interact with purple loosestrife in a manner detrimental to muskrats. Muskrats apparently find stems of purple loosestrife much less palatable then those of cattail, but they do cut purple loosestrife stems. As they forage they favor cattail stems, potentially shifting the competitive balance toward the less palatable purple loosestrife. The ability of muskrats to shift the competitive balance between cattails and purple loosestrife was corroborated by Rawinski [102] from observations of mixed stands where muskrats were present. At a particular site, muskrats removed entire patches of cattail, leaving purple loosestrife the only remaining emergent. Muskrats may further favor purple loosestrife seedling establishment following den construction. This activity can cause substantial soil disturbance that is rapidly colonized by purple loosestrife seedlings during lower summer water levels. Because of their ability to generate new vegetative growth, partially eaten purple loosestrife stems also represent potential new propagules, adding to its competitive advantage [23]. As community composition shifts from cattails to purple loosestrife dominance, habitat quality and subsequent muskrat carrying capacity apparently decline [129].

Conversion of wetland pasture to predominantly purple loosestrife is believed to reduce forage value for livestock and deer [128]. As purple loosestrife density increases and mature plants produce greater numbers of shoots, the woody nature of purple loosestrife stems diminishes forage value [118].

Purple loosestrife may have adverse effects on habitat of the threatened bog turtle, although details are scant [26,67].

Purple loosestrife invasion may be detrimental to production of natural and domestic wild rice in areas of the upper Midwest, particularly in commercial wild rice paddy operations where water level manipulation presents ideal germination conditions. Dense purple loosestrife infestations can also undermine the functionality of drainage waterways, such as irrigation ditches [118].

Water level manipulations in impoundments have been hindered by threat of purple loosestrife invasion. A 1000-fold increase in acreage containing purple loosestrife was noted over a 23-year period in a central New York wetland and the cause was speculated to be recurrent drawdown of impoundments [102]. In areas managed for waterfowl production, such as many federal and state wildlife refuges, water level drawdowns in impoundments may provide establishment opportunities for purple loosestrife. Drawdowns are often executed to encourage recruitment of plants valuable to waterfowl such as cattails, smartweed (Polygonum spp.) and wild millet (Echinochloa spp.) on exposed soils [90].

Invading purple loosestrife is being monitored in the middle Snake River corridor in Idaho for effects on stream channel dynamics. Purple loosestrife is colonizing gravel bars under low flow conditions. Once established, it appears able to withstand inundation and flowing water conditions better than native annuals. It is feared that persistent purple loosestrife plants may contribute substantially to sediment trapping, leading to gravel bar aggradation, closure of small channels, and despoiling of secure, predator-free island nesting habitat for local waterfowl [32].

Control: Land managers concerned about invasive purple loosestrife should focus on eliminating small, recently-established populations before tackling large, well-established populations. Buildup and persistence of purple loosestrife seed in the soil seed bank appears to be the most problematic, long-term obstacle in eradicating, or at least controlling purple loosestrife. Preventing seed production and seed bank accumulation within recently-established stands is a pragmatic goal, especially in the face of limited resources and knowledge [138,139]. Welling and Becker [138] demonstrated the potential difficulty managers face with attempts to exhaust seed banks in areas where purple loosestrife is well established, although not necessarily monodominant. Because seed dormancy is enforced by burial at relatively shallow (>0.8 inch (2 cm)) depth, and because purple loosestrife seed banks may contain thousands of seeds per square foot at these depths, even successful eradication of extant adult plants and new recruits from near-surface germinants may not suffice for successful long-term control. Even the ability to exhaust near-surface (<0.4 inch (1 cm)) seed banks by promoting germination and removing emergent seedlings is in question.

Any disturbance or management activity that fragments live stem or root tissue is likely to result in the spread, rather than containment of purple loosestrife [23,118]. Live stems that are dislodged and buried can give rise to new shoots via adventitious buds [23,129]. Carp may play an important role where they co-occur with purple loosestrife. Carp eat the roots of purple loosestrife, sometimes until the plants are dislodged and float away. These plants then become potential propagules if they lodge on suitable substrate [102].

Detection and control efforts may be hindered by purple loosestrife's propensity to occasionally remain dormant for an entire growing season. Some plants fail to generate aboveground shoots during a particular year, but exhibit normal growth from the same rootstock in preceding and following years [42,129].

Prevention: It is important to avoid management activities that may enhance the risk of purple loosestrife invasion and expansion. Examples of mitigative efforts are a) encourage establishment, growth, or perpetuation of native woody cover that might provide enough shade to depress or discourage purple loosestrife, b) minimize water level fluctuations in manipulated wetlands or waterways that might encourage establishment of purple loosestrife seedlings, especially early-season drawdowns that expose bare substrate, and c) avoid any form of stress or disturbance to extant native plant communities in susceptible areas, such as disturbing soil with heavy machinery, and where such activities are unavoidable, monitoring impacted areas to detect invaders [129].

Periodic, systematic monitoring of susceptible habitats is strongly encouraged [144]. Development of local populations, as expressed by percent biomass constituted by purple loosestrife, is roughly a logistic function through time. Initial rate of spread of local infestations is slowed when extant competition is strong. As a result, early detection and eradication of colonizing plants is highly preferred. Fortunately, early detection is aided by the tall, showy flower stalks and lengthy period of bloom. Once purple loosestrife becomes strongly established, with many (>10) flowering stems per rootstock, multiple clumps forming monospecific patches or stands, and establishment of a seed bank, eradication becomes more expensive, intrusive, and difficult [129].

Spread of purple loosestrife in natural areas likely has been accelerated by the development, sale and use of various loosestrife cultivars for horticultural purposes. Sale and utilization of ornamental loosestrife cultivars should be curtailed to prevent the risk of further dissemination into previously uncolonized areas. Cultivars are capable of contributing viable seed and pollen to wild populations, and claims of sterile hybrids have been shown to be mainly false [3,74,92].

As with most invasive species, public education plays an important role in preventing establishment and spread of purple loosestrife. Planting of loosestrife cultivars for horticultural purposes should be strongly discouraged. Individuals who frequent areas susceptible to invasion can aid in prevention by washing boots, clothing, equipment, etc. before exiting such areas, and should be encouraged to identify and report potential new infestations to authorities.

Integrated management: A single method may not be effective for long-term control or removal of purple loosestrife. Integrated management involves using several management techniques in a well-planned, coordinated and organized program. Many combinations of control methods can achieve desired objectives. Methods selected for a specific site will be determined by land-use objectives, desired plant community, extent and nature of infestation, environmental factors (nontarget vegetation, habitat types, climate, hydrology, etc.), economics, and effectiveness and limitations of available control techniques [103,114].

Cultural: Seeding of competitive vegetation in areas where bare soil has been exposed may be a useful mitigative measure. This may be especially helpful where presence of seed in the soil seed bank indicates potential for robust purple loosestrife regeneration. Experiments examining the effectiveness of seeding Japanese millet (Echinochloa esculenta) to reduce the impact of purple loosestrife recruitment have shown mixed results [80,140]. In addition to providing competition against purple loosestrife seedlings, Japanese millet may be used by waterfowl and is thought to represent a minimal threat of invasiveness, although it is not native to North America [129]. Seeding native species may provide a desirable postdisturbance community, but explicit tests of the competitive abilities of various native plants when seeded with purple loosestrife are lacking. Seeding of competitors should take place immediately following exposure of soil to maximize their competitive abilities [80].

Flooding infested areas by raising water levels for extended periods may eliminate purple loosestrife from impoundment sites [46]. Flooding duration is more likely to influence mortality than depth of flooding, but specific guidelines are lacking [9]. Persistent high water conditions can slow the growth and reproductive capacity of purple loosestrife and over several years may eliminate extant stands, but results are variable and interactions with other factors poorly understood [80]. In plots subjected to consistently high water levels (16 inch (40 cm) mean depth)), competition with narrow-leaved cattail significantly (P<0.001) reduced stem densities of purple loosestrife compared with flooded stands where purple loosestrife was the predominant species [101]. More research is needed to determine optimal flooding duration and factors that influence variability in the effect of flooding duration [9].

Effectiveness of flooding as a control measure may be enhanced by cutting purple loosestrife stems prior to raising water levels [80]. Cut material should always be removed from the site to prevent spread of vegetative propagules. The efficacy of flooding may be influenced by the presence of carp within contiguous waterways, although the ultimate effects are unclear. Carp may reduce purple loosestrife by grazing its roots or enhance its spread by disseminating vegetative propagules [102]. Carp are not native to North America and should not be introduced as a means to control purple loosestrife.

Consistent spring and early-summer flooding may inhibit purple loosestrife seedling establishment [9,137]. Flooding seedlings 0.8 to 4 inches (2-10 cm) tall for 9 weeks at depths up to 12 inches (30 cm) did not significantly (P<0.05) reduce mean stem densities. Most plants continued to grow, if slowly, while submerged, and plants which emerged above the surface quickly resumed rapid growth [52]. Established purple loosestrife plants can survive in deepwater emergent habitat, in part by development of aerenchymous (containing large intercellular air spaces) stem tissue that facilitates gas exchange in aquatic environments.

Several factors may hinder the effectiveness of controlling purple loosestrife by flooding. Managers may be constrained in their ability to manipulate water levels by the geologic profile of the site or by development along its margins. Substantial warm season evaporation can contribute to this problem. Sustained high water levels may be detrimental to desirable native emergent or shoreline vegetation. Once purple loosestrife has been killed, managers should consider species composition within the remnant seed bank, and the ensuing colonizing community, when water levels have been reduced. It is likely that purple loosestrife seedlings will recolonize the newly exposed soil and further management may be inevitable.

Physical/mechanical: Cutting stems or removing flower heads prior to seed dissemination can prevent local seed bank accumulation. Late-summer cutting appears to reduce vegetative growth more effectively than mid-summer treatments. However, cutting stems is unlikely to prevent perennial stem growth [46,102]. Cutting flower heads may be useful in preventing further seed production when primary control activities, such as herbicide application, require more than 1 season to completely eradicate purple loosestrife [13]. Cutting purple loosestrife stems underwater at various times in summer was ineffective [51].

Digging or hand-pulling plants is recommended for early infestations or a few scattered plants. Digging or pulling young plants in recently colonized areas can be effective in preventing establishment of dense, intractable stands and buildup of substantial seed banks. Early detection is important since established plants may rapidly become too large and deep-rooted for easy removal [102,129]. Because growing points of the plant are located on the root crown, removal of as much rootstock as possible is strongly encouraged [23,46]. Pulling entire plants is easiest when the soil is wet [102,131]. All pulled plant material should be removed from the site to prevent vegetative reproduction from discarded fragments [23]. Spot spraying individual plants with herbicide may be less time and labor intensive when infestations become too large for removal by pulling or digging [129].

Fire: See Fire Management Considerations.

Biological: The objective of biological control is to re-establish ecological relationships that have evolved between purple loosestrife and its native predators in order to suppress invasive populations and reduce harmful impacts. Potential advantages of biological control are cost effectiveness at large scales, sustainability, and benign effects in the nontarget environment [22,131]. The Nature Conservancy's Weed Control Methods Handbook provides a comprehensive discussion of considerations and safety issues in developing and implementing a biological control program.

Plant communities where purple loosestrife is found are similar in North America and Europe. Because native insect herbivory inhibits purple loosestrife performance in Europe, it is hoped introductions of European insect herbivores may work to reduce the competitiveness of purple loosestrife in North America, while releasing native plants from suppression [18,19].

The following table lists non-native insects released in North America to control purple loosestrife:

Control Agent Mode of Action Release Sites Galerucella calmariensis (beetle) Larvae and adults feed on foliage and flowers  MB, ON Galerucella pusilla (beetle) Larvae and adults feed on foliage and flowers [18] MB, ON, WA [29,31,97] Hylobius transversovittatus (weevil) Larvae and adults feed on roots [17] WA [97] Nanophyes marmoratus (weevil) Larvae feed on flowers and adults feed on foliage and flowers [21] MB [49]

Galerucella beetles have been the most effective biocontrol agents used against purple loosestrife in North America thus far [29,62,97]. G. calmariensis and G. pusilla are similar in appearance and habit and are most effective when released together, and both species appear to be unaffected by exposure to the herbicides glyphosate and triclopyr [75,76]. Because of "dramatic" success at some Galerucella release sites, release of other agents should focus on sites where Galerucella have been ineffective. In Europe, H. transversovittatus herbivory on purple loosestrife is strongest in the northern range of the plant, indicating that higher latitude sites may be a good choice for its release in North America [50].

Myzus lythri, a European aphid that has probably been present in the Eastern United States since the early 1930's, might become an effective biological control agent. It has a host-alternating life cycle, utilizing loosestrife and Epilobium spp. in summer and Prunus spp. as primary hosts the rest of the year. Populations of M. lythri could be manipulated to impact local purple loosestrife populations by mass-rearing bugs for targeted early-spring release and/or by planting Prunus spp. near targeted sites [134].

Research examining the potential use of pathogenic fungi as biocontrol agents is ongoing [91].

Chemical: A variety of herbicides are effective at controlling purple loosestrife in infested areas. Below is a list of herbicides that have been used effectively against purple loosestrife in North America, as well as a brief discussion of important considerations regarding their use. This is not intended as an exhaustive review of chemical control methods. For more detailed information regarding appropriate use of herbicides in natural areas against this and other invasive plant species, see The Nature Conservancy's Weed Control Methods Handbook.

Chemical Considerations 2,4-D [13,90,118,140] Mixed results against purple loosestrife; harmful to dicots, but little impact on neighboring monocots Triclopyr [12,38,61,89,118] Generally effective at killing purple loosestrife; results are variable with spray volume; selective against dicots Glyphosate [12,80,102,104,118,122,131] Highly effective against purple loosestrife; specific formulations available for use in aquatic environments; also damages or kills most other plants which it contacts Imazapyr [11] Effective against purple loosestrife; negatively impacts cattail

A serious challenge to controlling purple loosestrife infestations with herbicides is preventing its re-establishment from the seed bank. In the presence of large purple loosestrife seed banks, removal of a considerable fraction of extant vegetation (weed or otherwise) can result in a dense monoculture of purple loosestrife seedlings. The result may be a worse infestation than was originally present [90]. Broadcast application of broad-spectrum herbicides, such as glyphosate, will likely result in widespread exposure of bare substrate and a dense, monotypic stand of purple loosestrife seedlings [118]. By carefully targeting glyphosate spray application to only purple loosestrife, damage to nontarget plants can be minimized. Continued careful treatments over several years can eventually reduce dense populations of purple loosestrife to minimal levels while promoting native plants [104,122]. Native plants are not just inherently valued, but can also provide competition against inevitable purple loosestrife recruitment from existing seed banks [118].

An apparent tradeoff exists when determining the best time to treat adult stands with herbicides. Managers must attempt to balance preventing seed production in established plants with treatments early in the growing season and preventing establishment of a viable new stand of purple loosestrife seedlings by delaying treatments long enough to inhibit recruitment. By conducting herbicide treatments on adult plants late in the growing season, newly established seedlings may not develop sufficiently to survive winter [89]. Late-summer herbicide application also appears to reduce negative effects on desirable native plants [80]. Rawinski [102] found that glyphosate application during late-bloom (mid-August in central New York) period, compared with late-vegetative (mid-June) period, resulted in fewer loosestrife seedlings the following season and increased presence of naturally established, beneficial plants such as shallow sedge (Carex lurida), rice cutgrass (Leersia oryzoides), smartweed and marsh seedbox (Ludwigia palustris). Late-season application of glyphosate in Minnesota wetlands tended to reduce cattail mortality compared with mid-summer treatments, perhaps because the onset of cattail senescence reduced herbicide uptake [12].

Another tradeoff exists between spray volume and target vs. nontarget effects. Purple loosestrife in Wisconsin was examined for response to variation in spray coverage of glyphosate (Rodeo at 1.5%). Individual genets were spot treated in mid-September and received either low (10-25% leaf area coverage), medium (40-60%), or high (75-90%) dosages. Reduction in adult purple loosestrife density was greatest in the high dosage treatment (90-100% reduction) and lowest in the low dosage treatment (75-90% reduction). Surviving purple loosestrife plants in all treatments were greatly reduced in size and vigor. Because glyphosate is nonselective in its effect, survival of nontarget vegetation was also closely related to dosage. High dosage treatment resulted in dense stands of purple loosestrife seedlings with little to no interspecific competition. In contrast, low dosage treatment resulted in high survival rates of desirable perennials and greatly reduced germination of purple loosestrife seedlings. Effective long-term control of purple loosestrife with glyphosate might best be achieved using low-dosage spot applications and conducting followup treatments in subsequent years as necessary [104].

To minimize non-target effects, managers in Michigan have developed a cut-and-herbicide method for purple loosestrife control. They propose cutting plants high on the stem (just below infloresence), allowing them to continue growing and better absorb the applied herbicide throughout the entire plant. Cutting too low apparently risks forcing the plant to "give up" on the leader and instead producing new ramets from the rootstock. Sponge applicators have been developed that limit contact between chemicals and nontarget plants [131]. These methods may be particularly useful in areas where mitigation of damage to indigenous species is important. Encouraging competition from extant native plants often helps reduce the vigor of invasives. For more detailed information regarding these methods, see Tu [131] and the TNC Weed Control Methods Handbook.

Sources and Credits

  1. (c) Manfred Heyde, some rights reserved (CC BY-SA), https://upload.wikimedia.org/wikipedia/commons/f/f8/Lythrum_salicaria_Rhine.jpg
  2. (c) Smiley.toerist., some rights reserved (CC BY-SA), https://upload.wikimedia.org/wikipedia/commons/6/67/Kattenstaart_%28Lythrum_salicaria%29_in_Den_Haag%2C_Nederland_-_20100730.jpg
  3. (c) Jörg Hempel, some rights reserved (CC BY-SA), http://farm8.staticflickr.com/7225/6945644098_c995498b40_o.jpg
  4. (c) José María Escolano, some rights reserved (CC BY-NC-SA), http://farm5.static.flickr.com/4117/4777357629_2c0d259892.jpg
  5. (c) User:Honza chodec/author, some rights reserved (CC BY-SA), https://upload.wikimedia.org/wikipedia/commons/1/11/Vstava%C4%8Dov%C3%A1_louka_06-2011-11.JPG
  6. (c) RickP, some rights reserved (CC BY), https://upload.wikimedia.org/wikipedia/commons/f/f6/Lythrum_salicaria_leaves_RJP_02.jpg
  7. Adapted by Kate Wagner from a work by (c) Wikipedia, some rights reserved (CC BY-SA), http://en.wikipedia.org/wiki/Lythrum_salicaria
  8. (c) Unknown, some rights reserved (CC BY-NC-SA), http://eol.org/data_objects/22948694
  9. Public Domain, http://eol.org/data_objects/1387683
  10. Public Domain, http://eol.org/data_objects/24629642

More Info

iNat Map